Dimensional Crossover in a Spin-imbalanced Fermi Gas

Shovan Dutta & Erich J. Mueller
Cornell University
September 23, 2015

arXiv:1508.03352
\[\hat{H}_{1D} = \int dz \left[\sum_{\sigma = \uparrow, \downarrow} \hat{\psi}^{\dagger}_\sigma(z) \left(\hat{H}^{sp} - \mu_\sigma \right) \hat{\psi}_\sigma(z) + g_{1D} \hat{\psi}^{\dagger}_\uparrow(z) \hat{\psi}^{\dagger}_\downarrow(z) \hat{\psi}_\downarrow(z) \hat{\psi}_\uparrow(z) \right] \]

- Large FFLO region (strong nesting)
- No long-range order
\[
\hat{H}_{1D} = \int dz \left[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_{\sigma}^\dagger(z) (\hat{H}^{sp} - \mu_\sigma) \hat{\psi}_\sigma(z) + g_{1D} \hat{\psi}_{\uparrow}^\dagger(z) \hat{\psi}_{\downarrow}^\dagger(z) \hat{\psi}_{\downarrow}(z) \hat{\psi}_{\uparrow}(z) \right]
\]

- Large FFLO region (strong nesting)
- No long-range order
- Interactions characterized by \(1/(n a_{1D})\)
Phase diagram in 1D : Bethe Ansatz

\[\hat{H}_{1D} = \int dz \left[\sum_{\sigma = \uparrow, \downarrow} \hat{\psi}_{\sigma}^{\dagger}(z)(\hat{H}_{\text{sp}} - \mu_\sigma)\hat{\psi}_{\sigma}(z) + g_{1D}\hat{\psi}_{\uparrow}^{\dagger}(z)\hat{\psi}_{\downarrow}^{\dagger}(z)\hat{\psi}_{\downarrow}(z)\hat{\psi}_{\uparrow}(z) \right] \]

- Large FFLO region (strong nesting)
- No long-range order
- Interactions characterized by \(1/(na_{1D})\) → negative slope
Phase diagram in 3D: Mean field

\[
\hat{H} = \int d^3 r \left[\sum_{\sigma = \uparrow, \downarrow} \hat{\psi}_\sigma^\dagger(\vec{r}) (\hat{H}_{\text{sp}}^\dagger - \mu_\sigma) \hat{\psi}_\sigma(\vec{r}) + g \hat{\psi}_\uparrow^\dagger(\vec{r}) \hat{\psi}_\downarrow^\dagger(\vec{r}) \hat{\psi}_\downarrow(\vec{r}) \hat{\psi}_\uparrow(\vec{r}) \right]
\]

- Small FFLO region (weak nesting)
- Long-range order
- Positive slope
\[\hat{H} = \int d^3r \left[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_\sigma^\dagger(\vec{r})(\hat{H}^{sp} - \mu_\sigma)\hat{\psi}_\sigma(\vec{r}) + g \hat{\psi}_{\uparrow}^\dagger(\vec{r})\hat{\psi}_{\downarrow}^\dagger(\vec{r})\hat{\psi}_{\downarrow}(\vec{r})\hat{\psi}_{\uparrow}(\vec{r}) \right] \]

- Small FFLO region (weak nesting)
- Long-range order
- Positive slope
- Other phases proposed: Deformed Fermi surface, Mixed phase, etc.
Why study dimensional crossover

Crossovers are interesting!

Optimal for observing FFLO (long-range order + nesting)

May give rise to new phases not present in 1D or 3D

Controllable parameters: lattice depth, densities, interaction strength
Crossovers are interesting!
Why study dimensional crossover

- Crossovers are interesting!
- Optimal for observing FFLO (long-range order + nesting)

Controllable parameters:
- lattice depth
- densities
- interaction strength
Why study dimensional crossover

- Crossovers are interesting!
- Optimal for observing FFLO
 (long-range order + nesting)
- May give rise to new phases
 not present in 1D or 3D
Why study dimensional crossover

- Crossovers are interesting!
- Optimal for observing FFLO (long-range order + nesting)
- May give rise to new phases not present in 1D or 3D
Why study dimensional crossover

- Crossovers are interesting!
- Optimal for observing FFLO (long-range order + nesting)
- May give rise to new phases not present in 1D or 3D

Controllable parameters:
- lattice depth, densities, interaction strength
Application: realizing the 1D model

Necessary conditions:

1. $V_0/E_R \gg 1 \implies J \to 0$ (isolated tubes)
2. Low density, and $T \ll \text{band-gap}$
 \implies transverse motion frozen to the lowest energy level
Application: realizing the 1D model

Necessary conditions:
- $V_0/E_R \gg 1 \implies J \to 0$ (isolated tubes)
- Low density, and $T \ll$ band-gap
 \implies transverse motion frozen to the lowest energy level

Olshanii’s mapping to an effective 1D model:

$$\frac{d_\perp \hbar \omega_\perp}{g_{1D}} = \frac{d_\perp}{2a_s} + \frac{\zeta(1/2)}{2\sqrt{2}}$$
Agrees with experiment! (near unitarity)

\[\epsilon_B = \frac{g_1 D m}{4 \hbar^2} \]
Agrees with experiment! (near unitarity)

\[\mu / \epsilon_B = g_1 D \frac{m}{4 \hbar^2} \]

\[\epsilon_B = \frac{g_1 D m}{4 \hbar^2} \]
Assumptions:

- J small \rightarrow use tight-binding model
- low density \rightarrow use Olshanii’s mapping
Quasi-1D: single-band mean-field model

Assumptions:

- J small \rightarrow use tight-binding model
- low density \rightarrow use Olshanii’s mapping

PRL 99, 250403 (2007): $J/\varepsilon_B = 0.08$
Quasi-1D: single-band mean-field model

- 1D-like structure for all interactions for small J.

![Phase diagram](image)
1D-like structure for all interactions for small J.
- predicts a turning point
 → not seen in experiments
 → need a more accurate model

Quasi-1D : single-band mean-field model

- Andreev bound states on each wall
- Two domain walls whose separation is large, containing two domain walls whose separation is large.
- The polarized normal (NP) phase, where the excess up spins in the ungapped, incommensurate FFLO state are not constrained.
- The gapped, commensurate FFLO state is further reduced, the 3D regime becomes sucking.
- This slice corresponds to the multicritical point where the SF to FFLO transition is continuous.
- The filled circle marks the tricritical point; near it, but not visible here is a tiny region of 'commensurate' (C) and ungapped 'incommensurate' (IC) phases.
- The SF-FFLO transition (solid line) is preempted by a first-order SF-to-NP transition.
- The large circle marks the region of FFLO where the intensity of the 2D optical lattice.
- In 1D the spectrum of BdG quasiparticles is fully gapped in the SF phase between FFLO and NP is diminished. In the limit of smaller, with the reentrance of the SF phase moving to wards 1D. Here, the FFLO phase appears and occupies a hard to detect thin shell.
- The thinness of this shell results from the small range of magnetization motion of the half of the Fermi surface to FFLO.
- The phases shown include the unpolarized SF, partially-polarized normal (N), and fully-polarized normal (NP). The FFLO phase is divided into gapped phases. The filled circle marks the tricritical point; near it, but not visible here is a tiny region of 'commensurate' (C) and ungapped 'incommensurate' (IC) phases.
- The SF-FFLO transition (solid line) is preempted by a first-order SF-to-NP transition.
- The large circle marks the region of FFLO where the intensity of the 2D optical lattice.
- In 1D the spectrum of BdG quasiparticles is fully gapped in the SF phase between FFLO and NP is diminished. In the limit of smaller, with the reentrance of the SF phase moving to wards 1D. Here, the FFLO phase appears and occupies a hard to detect thin shell.
- The thinness of this shell results from the small range of magnetization motion of the half of the Fermi surface to FFLO.
- The phases shown include the unpolarized SF, partially-polarized normal (N), and fully-polarized normal (NP). The FFLO phase is divided into gapped phases. The filled circle marks the tricritical point; near it, but not visible here is a tiny region of 'commensurate' (C) and ungapped 'incommensurate' (IC) phases.
What we did

- Consider a single tube - model as a cylindrical harmonic trap
- $1D \rightarrow 3D$ crossover happens as density (or μ) increases
What we did

- Consider a single tube - model as a cylindrical harmonic trap
- 1D → 3D crossover happens as density (or μ) increases
- Find mean-field phase diagram as a function of a_s and T
- Map to an effective 1D model for $\mu < 2\hbar\omega_\perp$
 → density corrections to Olshanii’s mapping
Setting up the equations

\[\hat{H} = \int d^3 r \left[\sum_{\sigma = \uparrow, \downarrow} \hat{\psi}_{\sigma}^\dagger (\vec{r}) \left(\hat{H}^{\text{sp}} - \mu_{\sigma} \right) \hat{\psi}_{\sigma} (\vec{r}) + g \ \hat{\psi}_{\uparrow}^\dagger (\vec{r}) \hat{\psi}_{\downarrow}^\dagger (\vec{r}) \hat{\psi}_{\downarrow} (\vec{r}) \hat{\psi}_{\uparrow} (\vec{r}) \right] \]

where \(\hat{H}^{\text{sp}} = -\hbar^2 \nabla^2 / (2m) + (1/2)m \omega_{\perp}^2 (x^2 + y^2) \).
Setting up the equations

\[
\hat{\mathcal{H}} = \int d^3r \left[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}^\dagger_\sigma(\vec{r}) (\hat{H}^{\text{sp}} - \mu_\sigma) \hat{\psi}_\sigma(\vec{r}) + g \hat{\psi}^\dagger_\uparrow(\vec{r}) \hat{\psi}^\dagger_\downarrow(\vec{r}) \hat{\psi}_\downarrow(\vec{r}) \hat{\psi}_\uparrow(\vec{r}) \right]
\]

where \(\hat{H}^{\text{sp}} = -\hbar^2 \nabla^2 / (2m) + (1/2) m \omega_\perp^2 (x^2 + y^2) \).

Define \(\Delta(\vec{r}) = g \langle \hat{\psi}_\downarrow(\vec{r}) \hat{\psi}_\uparrow(\vec{r}) \rangle \)
Setting up the equations

\[\hat{H} = \int d^3r \left[\sum_{\sigma=\uparrow,\downarrow} \hat{\psi}_\sigma^\dagger(\vec{r})(\hat{H}^{\text{sp}}-\mu_\sigma)\hat{\psi}_\sigma(\vec{r}) + g \hat{\psi}_\uparrow^\dagger(\vec{r})\hat{\psi}_\downarrow^\dagger(\vec{r})\hat{\psi}_\downarrow(\vec{r})\hat{\psi}_\uparrow(\vec{r}) \right] \]

where \(\hat{H}^{\text{sp}} = -\hbar^2 \nabla^2 / (2m) + (1/2)m\omega_\perp^2 (x^2 + y^2) \).

Define \(\Delta(\vec{r}) = g \langle \hat{\psi}_\downarrow(\vec{r})\hat{\psi}_\uparrow(\vec{r}) \rangle \)

Diagonalize the BdG Hamiltonian:

\[\hat{H}^{\text{MF}} = \sum_n \left[(E_n-h)\hat{\gamma}_n^\dagger \hat{\gamma}_n^\uparrow + (E_n+h)\hat{\gamma}_n^\dagger \hat{\gamma}_n^\downarrow + (\varepsilon_n-E_n) \right] - \frac{1}{g} \int d^3r |\Delta(\vec{r})|^2 \]

where

\[
\begin{pmatrix}
\hat{H}^{\text{sp}} - \mu & \Delta(\vec{r}) \\
\Delta^*(\vec{r}) & \mu - \hat{H}^{\text{sp}}
\end{pmatrix}
\begin{pmatrix}
u(\vec{r}) \\ u(\vec{r})
\end{pmatrix} = E
\begin{pmatrix}
u(\vec{r}) \\ u(\vec{r})
\end{pmatrix}, \quad E_n \geq 0
\]
Regularization

Ground state energy \((T = 0)\):

\[
\mathcal{E} = \sum_n \left[\alpha(E_n - h) + \varepsilon_n - E_n \right] - \frac{1}{g} \int d^3 r |\Delta(\vec{r})|^2 .
\]
Ground state energy \((T = 0)\):

\[
\mathcal{E} = \sum_n [\alpha(E_n - \hbar) + \varepsilon_n - E_n] - \frac{1}{g} \int d^3r \, |\Delta(\vec{r})|^2.
\]

\(g\) is related to \(a_s\):

\[
\frac{1}{g} = \frac{m}{4\pi\hbar^2 a_s} - \int \frac{d^3k}{(2\pi)^3} \frac{m}{\hbar^2 k^2}.
\]
Ground state energy \((T = 0)\):

\[
E = \sum_n \left[\alpha (E_n - \hbar) + \varepsilon_n - E_n \right] - \frac{1}{g} \int d^3 r \, |\Delta(\vec{r})|^2 .
\]

\(g\) is related to \(a_s\):
\[
\frac{1}{g} = \frac{m}{4\pi \hbar^2 a_s} - \int \frac{d^3 k}{(2\pi)^3} \frac{m}{\hbar^2 k^2} .
\]

For large \(n\), \(|\varepsilon_n - E_n| \ll \varepsilon_n \Rightarrow\) use perturbation theory

\[
\Rightarrow E = E_{\text{exact}} - \sum_n' \langle n|\hat{\Delta}\hat{\Delta}^\dagger|n\rangle/(2\varepsilon_n) - \frac{1}{g} \int d^3 r |\Delta(\vec{r})|^2
\]

\(\text{divergences cancel out}\)
Ansatz for $\Delta(\vec{r})$

$$\Delta(\vec{r}) = \Delta_0 \ e^{-(x^2+y^2)/\xi^2} \ e^{iqz}$$

- Variational parameters: Δ_0, ξ, q

Allowed states: FF, BCS ($q = 0$), Normal ($\xi = 0$), and breached-pair ($q = 0$)
Ansatz for $\Delta(\vec{r})$

\[\Delta(\vec{r}) = \Delta_0 \, e^{-\left(x^2+y^2\right)/\xi^2} \, e^{i q z} \]

- Variational parameters: Δ_0, ξ, q
- Allowed states: FF, BCS ($q = 0$), Normal ($\Delta_0 = 0$), and breached-pair ($q = 0$)
Ansatz for $\Delta(\vec{r})$

$$\Delta(\vec{r}) = \Delta_0 \ e^{-(x^2+y^2)/\xi^2} \ e^{i q z}$$

- Variational parameters: Δ_0, ξ, q
- Allowed states: FF, BCS ($q = 0$), Normal ($\Delta_0 = 0$), and breached-pair ($q = 0$)
- LO ansatz yields very similar results
Breached-pair state

What it is: a coherent mixture of Cooper pairs and unpaired fermions, which occupy different regions in momentum-space.
Breached-pair state

What it is: a coherent mixture of Cooper pairs and unpaired fermions, which occupy different regions in momentum-space.

Example dispersions in 1D:

![Graph showing dispersions in 1D](image-url)
Phase diagram at weak interactions \((a_s = -d_\perp/3)\)

1D-like structure that repeats as new channels open

\[\epsilon_B = \frac{g_{1D}^2 m}{4 \hbar^2} \]
Change with stronger interactions ($a_s = -2d_\perp /3$)

Crossover to 3D happens at a lower density ($\mu / \hbar \omega_{\perp}$)

The SF region grows

Shovan Dutta & Erich J. Mueller

Dimensional Crossover in a Spin-imbalanced Fermi Gas
Change with stronger interactions \((a_s = -2d_{\perp}/3)\)

- Crossover to 3D happens at a lower density \((\mu)\)
- The SF region grows
At unitarity

- Stable BP phase emerges
- 3D-like for all densities
At unitarity

- Stable BP phase emerges
- 3D-like for all densities
- Experiment finds 1D-like behavior at low densities ($\mu \sim 1.1\hbar\omega_\perp$)

Shovan Dutta & Erich J. Mueller
Dimensional Crossover in a Spin-imbalanced Fermi Gas
At unitarity

- Stable BP phase emerges
- 3D-like for all densities
- Experiment finds 1D-like behavior at low densities ($\mu \sim 1.1\hbar\omega_\perp$)
- DFT produces 3D-like behavior (+BP)!
At unitarity

Does not agree with mean-field results with Olshanii’s mapping
Phase diagrams

Shovan Dutta & Erich J. Mueller
Dimensional Crossover in a Spin-imbalanced Fermi Gas
FF and BP dispersions

Different curves denote different transverse modes
Degenerate 2nd-order perturbation theory:

\[
\frac{d \hbar \omega \downarrow}{g_{1D}} = f\left(\frac{a_s}{d \downarrow}, \frac{\mu}{\hbar \omega \downarrow}, \frac{\Delta_0}{\hbar \omega \downarrow}, \frac{\xi}{d \downarrow}, q d \downarrow\right)
\]
Degenerate 2nd-order perturbation theory:

\[
\frac{d_\perp \hbar \omega_\perp}{g_{1D}} = f\left(\frac{a_s}{d_\perp}, \frac{\mu}{\hbar \omega_\perp}, \frac{\Delta_0}{\hbar \omega_\perp}, \frac{\xi}{d_\perp}, qd_\perp \right)
\]

Consider the limit \(\Delta_0, q \to 0, \frac{\xi}{d_\perp} \to 1 \):

\[
\frac{1}{\tilde{g}_{1D}} = \frac{1}{2\tilde{a}_s} + \frac{\zeta\left(\frac{1}{2}, 2 - \tilde{\mu}\right)}{2\sqrt{2}}
\]

\[
- \frac{\sqrt{2}}{\pi} \Theta(\tilde{\mu} - 1) \sum_{j=1}^{\infty} \frac{2^{-2j}}{\sqrt{j+1 - \tilde{\mu}}} \tan^{-1} \sqrt{\frac{\tilde{\mu} - 1}{j+1 - \tilde{\mu}}},
\]

As \(\mu \to \hbar \omega_\perp, 1/\tilde{g}_{1D} = 1/(2\tilde{a}_s) + \zeta(1/2)/(2\sqrt{2}) \) (Olshanii!)
Comparisons of effective models

Red → Mean-field with our mapping
Blue → Mean-field with Olshanii’s mapping
Green → Bethe Ansatz with our mapping
Effect of temperature

\[\beta \hbar \omega \]