Variational study of impurity dynamics in 1D Bose lattice

Shovan Dutta 09/18/2013

Ref: Shovan Dutta and Erich J. Mueller arXiv:1308.4876

- * Bose-Hubbard model
- * Experimental background
- * Single impurity
 - Limiting behaviors
 - Variational wavefunction
 - Results
- * Two impurities and bound states
- Summary & outlook

* A good model: Bose-Hubbard Hamiltonian Jaksch et al PRL '98 $\hat{H} = -J \sum_{\langle i,j \rangle} \hat{b}_i^{\dagger} \hat{b}_j + \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i \hat{n}_i$

* A good model: Bose-Hubbard Hamiltonian Jaksch et al PRL '98 $\hat{H} = -J \sum_{\langle i,j \rangle} \hat{b}_i^{\dagger} \hat{b}_j + \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i \hat{n}_i$

* A good model: Bose-Hubbard Hamiltonian Jaksch et al PRL '98 $\hat{H} = -J \sum_{\langle i,j \rangle} \hat{b}_i^{\dagger} \hat{b}_j + \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i \hat{n}_i + \sum V_i^{\text{trap}} \hat{n}_i$

* A good model: Bose-Hubbard Hamiltonian Jaksch et al PRL '98 $\hat{H} = -J \sum_{\langle i,j \rangle} \hat{b}_i^{\dagger} \hat{b}_j + \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i \hat{n}_i$

* A good model: Bose-Hubbard Hamiltonian Jaksch et al PRL '98 $\hat{H} = -J \sum_{\langle i,j \rangle} \hat{b}_i^{\dagger} \hat{b}_j + \frac{U}{2} \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i \hat{n}_i$

* Condition: band gap $E_b \gg J$, U, T. – satisfied in typical exp settings ($\lambda \sim 1 \ \mu m, \ m \lesssim 100 \ amu, \ T < 10^{-6} \ K$).

* Bose-Hubbard Hamiltonian:

$$\begin{split} \hat{H} &= -J\sum_{\langle i,j\rangle} \hat{b}_i^{\dagger} \hat{b}_j + \frac{U}{2}\sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i \hat{n}_i \\ \star J/U \ll 1: \\ \text{Mott} \\ \text{Insulator} \\ \star J/U \gg 1: \\ \text{Superfluid} \\ \end{split}$$

* Bose-Hubbard Hamiltonian:

$$\begin{split} \hat{H} &= -J\sum_{\langle i,j\rangle} \hat{b}_i^{\dagger} \hat{b}_j + \frac{U}{2}\sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i \hat{n}_i \\ \star J/U \ll 1: \\ \text{Mott} \\ \text{Insulator} \\ \star J/U \gg 1: \\ \text{Superfluid} \\ \end{split}$$

* Phase transition occurs at $J/U \approx 0.29$ (mean field theory gives 0.09).

* Experiment by Bloch group on spin impurity: Nature Phys '13

* Experiment by Bloch group on spin impurity: Nature Phys '13

• • • • • • *7Rb
• =
$$\uparrow \equiv |F = 1, m_F = -1\rangle$$
 • = $\downarrow \equiv |F = 2, m_F = -2\rangle$

* Experiment by Bloch group on spin impurity: Nature Phys '13

• • • • • • • *7Rb
• =
$$\uparrow \equiv |F = 1, m_F = -1\rangle$$
 • = $\downarrow \equiv |F = 2, m_F = -2\rangle$

* Polaron-like dynamics

* Experiment by Bloch group on spin impurity: Nature Phys '13

 $\bigcirc \equiv \uparrow \equiv |F=1, m_F=-1\rangle$ $\bigcirc \equiv \downarrow \equiv |F=2, m_F=-2\rangle$

* Polaron-like dynamics & Renormalized impurity hopping

 87 Rb

Model

* Two-species Bose-Hubbard Hamiltonian:

$$\hat{H} = -J \sum_{\langle i,j \rangle,\sigma} \hat{b}_{i,\sigma}^{\dagger} \hat{b}_{j,\sigma} + \frac{U}{2} \sum_{i,\sigma,\sigma'} \hat{n}_{i,\sigma} \hat{n}_{i,\sigma'} - \mu \sum_{i,\sigma} \hat{n}_{i,\sigma}$$

- * Interaction and tunneling spin-independent a good approximation for $^{87}{\rm Rb}$.
- * Lets see the limiting behaviors...

* Impurity can spread by 2nd order tunneling:

* Impurity can spread by 2nd order tunneling:

* 2nd order perturbation theory gives

* 2nd order perturbation theory gives

$$\varepsilon_{\text{Mott}}(k) = \varepsilon_{\text{Mott}}(0) + \frac{4J^2}{U}(1 - \cos k)$$

corresponding to

- * Bogoliubov approximation: take quadratic fluctuations about the ground state using $\hat{b}_{0,\uparrow/\downarrow} = \sqrt{N^{\uparrow/\downarrow}}$.
- * Diagonalize via Bogoliubov transformation.

- * Bogoliubov approximation: take quadratic fluctuations about the ground state using $\hat{b}_{0,\uparrow/\downarrow} = \sqrt{N^{\uparrow/\downarrow}}$.
- * Diagonalize via Bogoliubov transformation.

$$\hat{H} = E_0 + \sum_{p \neq 0} (\varepsilon_c(p) \ \hat{c}_p^{\dagger} \hat{c}_p + \varepsilon_0(p) \ \hat{d}_p^{\dagger} \hat{d}_p)$$

$$\varepsilon_0(p) = 2J \ (1 - \cos p)$$

$$\varepsilon_c(p) = \sqrt{(\varepsilon_0(p))^2 + 2 \varepsilon_0(p) \ U \ (n^{\uparrow} + n^{\downarrow})}$$

$$\hat{b}_{p,\uparrow/\downarrow} = \sqrt{n^{\uparrow/\downarrow}} \ (u_p \hat{c}_p + v_p \hat{c}_{-p}^{\dagger}) \mp \sqrt{n^{\downarrow/\uparrow}} \ \hat{d}_p$$

$$u_p, v_p = \frac{1}{2} \left[\sqrt{\varepsilon_0(p)/\varepsilon_c(p)} \pm \sqrt{\varepsilon_c(p)/\varepsilon_0(p)} \right]$$

* When $n^{\downarrow} \to 0$ and $n^{\uparrow} \to 1$, $\langle \hat{b}_{j,\uparrow}^{\dagger} \hat{b}_{j,\uparrow} \hat{b}_{0,\downarrow} \hat{b}_{0,\downarrow} \rangle = n^{\downarrow} n_{j}^{\uparrow}$. $\cdots \uparrow \stackrel{-M}{\downarrow} \uparrow \cdots \stackrel{-j}{\uparrow} \cdots \stackrel{-1}{\uparrow} \stackrel{0}{\downarrow} \stackrel{1}{\uparrow} \cdots \stackrel{j}{\uparrow} \cdots \cdots \uparrow \stackrel{M}{\downarrow} \uparrow \cdots \uparrow \cdots \uparrow \stackrel{M}{\downarrow} \uparrow \cdots$

Variational Wavefunction

$$|j
angle = \sum_{i} \left(\int_{i} \hat{b}_{i+j,\uparrow} \hat{b}_{j,\downarrow}^{\dagger} |MF
angle
ight) + A \hat{b}_{j,\downarrow}^{\dagger} |MF
angle$$

Variational parameters
 $|MF
angle = \prod_{l} \sum_{n} \beta_{n} |n
angle_{l}$ (Gutzwiller mean-field ground state

★

Variational Wavefunction

$$|j
angle = \sum_{i} \left(\int_{i} \hat{b}_{i+j,\uparrow} \hat{b}_{j,\downarrow}^{\dagger} |MF
angle
ight) + A \hat{b}_{j,\downarrow}^{\dagger} |MF
angle$$

Variational parameters
 $|MF
angle = \prod_{l} \sum_{n} \beta_{n} |n
angle_{l}$ (Gutzwiller mean-field ground state)

* Expect: i) Mott:
$$f_{\pm 1} \simeq (J/U)(1 + e^{\pm ik})f_0$$

ii) Deep superfluid: $f_i \simeq f_j$

★

Main Result

Main Result

Polaron

- * Polaron size is larger for smaller U/J
- * Moving polaron is bigger (max around k = 0.66 Π)
- * Bath density oscillates with $\lambda \approx 4 \Pi / k$

Impurity spreading

* Localized impurity: $|\psi(0)\rangle = \hat{b}_{0,\uparrow}\hat{b}_{0,\downarrow}^{\dagger}|MF\rangle$ $|\psi(t)\rangle = \sum_{k} \langle k|\psi(0)\rangle |k\rangle e^{-iE_{\text{Var}}(k)t}$ * Impurity distribution: $P_{J/U}(j,t) = \langle \psi(t)|\hat{b}_{j,\downarrow}^{\dagger}\hat{b}_{j,\downarrow}|\psi(t)\rangle$

Impurity spreading

* Localized impurity: $|\psi(0)\rangle = \hat{b}_{0,\uparrow}\hat{b}_{0,\downarrow}^{\dagger}|MF\rangle$ $|\psi(t)\rangle = \sum_{k} \langle k|\psi(0)\rangle |k\rangle e^{-iE_{\text{var}}(k)t}$ * Impurity distribution: $P_{J/U}(j,t) = \langle \psi(t)|\hat{b}_{j,\downarrow}^{\dagger}\hat{b}_{j,\downarrow}|\psi(t)\rangle$

Impurity spreading

Uncorrelated impurity & hole

* Consider the wavefunction $|k;p\rangle = \hat{b}_{p,\uparrow}\hat{b}_{p-k,\downarrow}^{\dagger}|MF\rangle$ having energy $E_{two}(k,p)$.

Polaron instability

* Consider the wavefunction $|k;p\rangle = \hat{b}_{p,\uparrow}\hat{b}_{p-k,\downarrow}^{\dagger}|MF\rangle$ having energy $E_{two}(k,p)$.

Polaron instability

* Consider the wavefunction $|k;p\rangle = \hat{b}_{p,\uparrow}\hat{b}_{p-k,\downarrow}^{\dagger}|MF\rangle$ having energy $E_{two}(k,p)$.

Probing the crossover

Q. Can we get bound states of two polarons?

Q. Can we get bound states of two polarons?

* Fukuhara et al observed two-magnon bound states in Mott insulating phase
arXiv:1305.6598

* Do such bound states (bipolarons) exist in superfluid?

* Variational wavefunction (for k = 0):

$$|\psi\rangle = \sum_{d\geq 0,\,j} \left[\frac{A(d) + \sum_{l} g(d,l) \hat{b}_{j+l,\uparrow}}{\sqrt{2}} \hat{b}_{j+d,\downarrow}^{\dagger} |MF\rangle \right]$$

Variational parameters

* Variational wavefunction (for k = 0):

$$ert \psi
angle = \sum_{d \ge 0, j} \left[A(d) + \sum_{l} g(d, l) \ \hat{b}_{j+l,\uparrow}
ight] \hat{b}_{j,\downarrow}^{\dagger} \hat{b}_{j+d,\downarrow}^{\dagger} ert MF
angle$$

Separation probability $P(d) = \sum_{j} \langle \psi ert \hat{b}_{j+d,\downarrow}^{\dagger} \hat{b}_{j,\downarrow} \hat{b}_{j,\downarrow} \hat{b}_{j+d,\downarrow} ert \psi
angle$

- * Polarons bound for $J/U \lesssim 0.15$
- ★ Phase transition occurs at J/U ≈ 0.09

*

* We get 4 regions with increasing J/U:

- i) MI with stable polarons and bipolarons
- ii) SF with stable polarons and bipolarons
- iii) SF with stable polarons but no bipolaron
- iv) SF with stable polarons only in a narrow k range

- * We have studied spin impurities in 1D Bose lattice through a simple variational ansatz
- * Single impurity:

- * We have studied spin impurities in 1D Bose lattice through a simple variational ansatz
- * Single impurity:
 - polaron size max for k \approx 0.66 T and larger for smaller U/J
 - impurity hopping flattens off inside superfluid

- * We have studied spin impurities in 1D Bose lattice through a simple variational ansatz
- * Single impurity:

polaron becomes unstable at weaker interactions

crossover can be probed experimentally

- * We have studied spin impurities in 1D Bose lattice through a simple variational ansatz
- * Two impurities:
 - stable bipolarons exist for strong interactions (both in MI & SF)
 - future experiments can test this
- * Q: i) What changes at different filling and higher D?
 ii) Effects of disorder?
 - iii) Is the kink in impurity speed real?

Shovan Dutta and Erich J. Mueller, arXiv:1308.4876