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Physical System

Atoms are captured in a 3D
harmonic trap

A deep optical lattice is turned
on in the x-y plane

Intertube coupling J is small

Initial atom energies are small
compared to the band gap
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Two cases

Lattice turn on is slow
compared to τcoll

Atoms are confined to the
lowest band

Model : Tight-binding

k

ε

-π/a π/a

Lattice turn on is fast
compared to τcoll

Atoms populate several
higher bands

Model : 2D harmonic well
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Motivation : Apparent conflict between two experiments

Rice : Spin-polarized fermions
(6Li) Nature 467, 567 (2010)

Measurements agree with
thermodynamic calculations

Penn State : Spinless bosons
(87Rb) Nature 440, 900 (2006)

Atoms do not thermalize!

In both cases, lattice turn on is
slow – dynamics in lowest band
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Dynamics confined to the lowest band

k1

k2

k1+p

k2-p

(k1 + p)2 + (k2 − p)2 = k2
1 + k2

2 + ∆ε⊥ , ∆ε⊥ ∼ J

ṅ(k) =

∫ ∫
dpdq f (pq) × [f is defined in Appendix 1][

n(k + J̃
1
2 p)n(k + J̃

1
2 q)
(
1 + ζn(k)

)(
1 + ζn(k + J̃

1
2 (p + q))

)
−
(
1 + ζn(k + J̃

1
2 p)
)(

1 + ζn(k + J̃
1
2 q)
)
n(k)n(k + J̃

1
2 (p + q))

]
,

where J̃ ≡ π2(J/ER), ζ = +1 (bosons), -1 (fermions), 0 (classical)

Shovan Dutta Thermalization in a Quasi-1D Quantum Gas



Dynamics confined to the lowest band

k1

k2

k1+p

k2-p

(k1 + p)2 + (k2 − p)2 = k2
1 + k2

2 + ∆ε⊥ , ∆ε⊥ ∼ J
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Small J̃ expansion

ṅ(k) =
(
ṅ(k)

)
cl

+
(
ṅ(k)

)
qu

+O(J̃4 ln J̃) ,

where(
ṅ(k)

)
cl

= J̃2
[(

(3− ln J̃)I2 − I2l

)
F1[n(k)] + I2F2[n(k)]

]
(
ṅ(k)

)
qu

= ζ J̃2
[(

(3− 2γ − ln(J̃/4))I2 − I2l

)
F3[n(k)] + I2F4[n(k)]

]
I2, I2l , γ are constants of order 1.

Rate of thermalization

Thermalization rate ∼ mω2a2
s J̃2(a− b ln J̃), where a and b are set

by n(k) and grow with density.

[Functionals and constants are defined in Appendix 2]
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Sample plot for J̃ = 0.001 (with t0 = π~/(2mω2a2
s ))
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Evolution of the momentum distribution.
Solid → boson, Dashed → fermion
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Mismatch between n(k) and its thermal fit.

=⇒ tth ∼ 5000t0 for J̃ = 0.001
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Equlibration time in the experiments

Rice (6Li) :

ω = 4π× 105 Hz, as = -484 nm
=⇒ t0 = 45 ns.

a = 532 nm, V0/ER ≈ 12
=⇒ J̃ ≈ 0.15

density ≈ 107cm−1 ≈ 5/a

=⇒ tth � (5000)(45 ns) = 0.22 ms

Measurement timescale ∼ 5 ms

Penn State (87Rb) :

ω = 2π × 67 kHz, as = 5.3 nm
=⇒ t0 = 0.23 ms.

a = 386.5 nm, V0/ER ≈ 76
=⇒ J̃ ≈ 1.5× 10−5

density ≈ 5× 106m−1 ≈ 1.93/a

=⇒ tth � (5000)(0.23 ms) = 1.15 s

Measurement timescale ∼ 0.4 s

Explains the apparently conflicting observations
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Dynamics with populations in higher energy bands

Lattice turn on is fast compared to τcoll

k1

k2

k1+p

k2-p

(k1+p)2

2 + (k2−p)2

2 =
k2

1
2 +

k2
2
2 + ∆ε⊥

∆ε⊥ = (Integer) ~ω

Harmonic confinement in x-y plane

The initial z-momentum distribution is narrow compared to 1/dosc.
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Results – three different timescales

Degenerate states within a band : tth ∼ 2-3 τcoll

Different energy bands : tth ∼ 30 τcoll

z-momentum distribution N(k) : tth ∼ 200 τcoll

Rate equation for occupations in the M-th energy band :

ṅM(k) =
1

M + 1

∞∑
M1,M2,M3=0

F (M,M1,M2,M3)

∫ ′dp
q
×

[
nM1(p + q)nM2(p − q)

(
1 + ζnM(k)

)(
1 + ζnM3(2p − k)

)
−
(
1 + ζnM1(p + q)

)(
1 + ζnM2(p − q)

)
nM(k)nM3(2p − k)

]
q =

√
(p − k)2 + M + M3 −M1 −M2,

[F is defined in Appendix 3]
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Sample plots
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Peaks in N(k)
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k

N
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)

Can be probed in future experiments

Initially, all particles have k ≈ 0

0

0

k

-k

2(k2/2) = ∆M = 0,±2,±4, . . .

∆M = 2 gives k =
√

2 ≈ 1.4

0

2

k

2 - k

∆M = 2 gives k ≈ 0.87, 2.3
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Summary

– Particles do thermalize after sufficiently many collisions if

they are in the lowest band, and J̃ 6= 0 : n(k) changes
smoothly to a thermal profile

they occupy more than one energy levels : n(k) exhibits
isolated peaks which later merge and form a thermal profile
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– Thermalization rate in a single band ∝ mω2a2
s J̃

2(a−b ln J̃) +O(J̃4 ln J̃)
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Appendix 1 [go back to slide]

f (ξ) ≡ 1

2π

∫ ∞
−∞

du e iξu
(

2F3

(1

2
,

1

2
; 1, 1, 1;−4u2

))2

2F3 denotes a Hypergeometric function

f (ξ) is peaked about ξ = 0 and vanishes for |ξ| > 8

I2 ≡
∫ ∞

0
dξ ξ2f (ξ) ≈ 2

I2l ≡
∫ ∞

0
dξ ξ2 ln ξ f (ξ) ≈ 2.18

γ ≡ Euler-Mascheroni constant ≈ 0.577
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Appendix 2 [go back to slide]

F1[n(k)] ≡ (n′′(k))2 − n(k)n(4)(k)

F2[n(k)] ≡ n(k)

∫ ∞
0

dp ln p
(
n(5)(k + p)− n(5)(k − p)

)
− n′′(k)

∫ ∞
0

dp ln p
(
n(3)(k + p)− n(3)(k − p)

)
F3[n(k)] ≡ −n(k)

3

[
6(n′′(k))2 + 16n′(k)n(3)(k) + 5n(k)n(4)(k)

]
F4[n(k)] ≡ 2 (ln 2− γ) ∂2

k

(
(n(k))2n(3)(k)− 2(n′(k))3 − 2n(k)n′(k)n′′(k)

)
+ ∂2

k

(
(n(k))2

∫ ∞
0

dp ln p
(
n(4)(k + p)− n(4)(k − p)

)
− n′(k) ∂3

k

∫ ∞
0

dp ln p
(
(n(k + p))2 − (n(k − p))2

))
where n(i)(k) ≡ ∂ ikn(k)
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Appendix 3 [go back to slide]

F (M,M1,M2,M3)

≡
M∑
n=0

M1∑
n1=0

M2∑
n2=0

M3∑
n3=0

C(n, n1, n2, n3) C(M − n,M1 − n1,M2 − n2,M3 − n3)

where

C(n, n1, n2, n3) =



0 if n + n1 + n2 + n3 is odd

1
n!n1!n2!n3!

(
Γ(

n+n3+n1−n2+1
2

)Γ(
n−n3+n1+n2+1

2
)

Γ(
n−n3+n1−n2+1

2
)

)2

×(
3F2

(
−n, −n1,

−n+n3−n1+n2+1
2 ;

−n−n3−n1+n2+1
2 , −n+n3−n1−n2+1

2 ;
1

))2

if n + n1 + n2 + n3 is even
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