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l. Motivation

Anyons:
* Fractional exchange statistics — new physics
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» Potential for topological quantum computation [1]

Bosons: +1 Fermions: —1
Anyons: e'?s  Non-Abelian: U

* Anyons exist in fractional quantum Hall effect [2]
(2D electrons in magnetic field) — hard to observe

Q: How to create anyons and measure statistics?
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Il. Goal

* Create fractional quantum Hall states with light (polaritons)

Simplest analog: v = 1/2 Laughlin state:
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z; = (x; +1y;)/l: location of jth particle, [: magnetic length

» Create anyonic quasihole excitations at +z;:
PN ({2i}) = Hj(zj — 20)(2j + 20) @~ ({2i})

» Exchange quasiholes and measure statistics

lll. Envisioned experiment
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V. Creating Laughlin state and quasiholes
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« Near-degenerate cavity — longitudinal mode number fixed = effective 2D dynamics in a transverse plane

« Non-planar geometry rotates transverse light field = effective magnetic field [3]

« Concave mirrors confine light = transverse harmonic trap

« Atom-light coupling mediates photon-photon interactions = long-lived strongly interacting Rydberg polaritons [4]

» Extra lasers yield localized potentials for binding holes

» Rapid adiabatic passage: inject photons one-by-one such that |®y) — |®1) — -+ — |®n)

1. Pump photons with angular momentum m = L,,.1— L,, = 2n (Laguerre-Gauss laser beams)
2. Sweep drive frequency thru resonance to induce transition from |®,,) to |®,,11)
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Overlap with each N-particle Laughlin state as a
function of time, for sweep duration 7 = 50/V,. Each
successive plateau corresponds to increasing /N by 1.

Cumulative error in state preparation as a func-
tion of sweep duration 7 for different final particle
numbers N. It falls off exponentially for large 7.

* Adiabatically insert strongly focused lasers to bind quasiholes and drag them around one another
(A small but finite trap frequency suppresses edge excitations)

« Sweeps must be slow enough to prevent excitations (7 > 1/V;) and fast enough to prevent loss (1 < 1/7)
— Vu/7 > 10N?1In N (current experiments have /v ~ 50)

VI. Measuring anyonic statistics

V. Model
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kinetic trap interaction drive potential

« Energy scales: (1) Landau level splitting 2wpg, (2) trap freq. wr, (3) interaction energy Vg, (4) polariton decay rate ~y

m_—|z|?/2

» Typically, wr, Vy,v < wp = dynamics confined to lowest Landau level, spanned by states ¢,,(z) = z™e

» Laughlin state |® ) is the N-particle ground state, with total angular momentum Ly = N(N — 1)

Total phase ¢ = ¢4 (dynamical) + ¢, (geometric) ®g = ¢AB (Aharonov-Bohm) -+ ¢ (statistical)

» Measuring ¢: compare with a reference |R) which ~ * Measuring ¢s: compare ¢4 from two experiments

Is unaffected by drives
(e.g., a Rydberg state with large blockade radius)

1. Use n/2-pulse to prepare |0) + |R)
0) : zero-polariton state

2. Create Laughlin, create holes, braid holes,
then repeat backward

0) +|R) — €"|0) + |R)

3. Use n/2-pulse to recombine |0) and | R) 0-6;‘ N — 9
- N =3

4. Find ¢ by measuring ground-state occupation ) 4r N
E 0.2 N =5

» Repeat experiment at different rates to separate ol
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