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Entanglement between spatially distant qubits is perhaps the most counterintuitive and vital resource for
distributed quantum computing. However, despite a few special cases, there is no known general procedure
to maximally entangle two distant parts of an interacting many-body system. Here we present a symmetry-based
approach, whereby one applies several timed pulses to drive a system to a particular symmetry sector with
maximal bipartite long-range entanglement. As a concrete example, we demonstrate how a simple sequence
of on-site pulses on a qubit array can efficiently produce multiple stable nonlocal Bell pairs, realizable in
present-day atomic and photonic experimental platforms. More generally, our approach paves a route for exotic
state preparation by harnessing symmetry. For instance, we show how it allows the creation of long-sought-after
superconducting η pairs in a repulsive Hubbard model.
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Introduction. Since the early days of quantum mechan-
ics, entanglement has been seen as a fundamental quantum
trait, which now lies at the heart of quantum information
processing [1,2]. In recent decades, experiments have made
great progress in generating entanglement between two iso-
lated qubits via photon exchange [3–5] and combining such
two-qubit gates to build multiqubit states [6–8]. However, it
is much more challenging to entangle a pair of distant qubits
in a system where multiple qubits interact with one another
[9]. Theoretical protocols have largely focused on creating a
single Bell pair between two ends of a spin chain [10–13]. Al-
though more pairs can be entangled using specially designed
nonuniform coupling [14,15] or correlated dissipation [16],
these are seldom realized in experiments [17] and limited to
free-fermionic chains.

Here, we introduce a more general approach that lever-
ages the existence of a symmetry to create entanglement
over increasingly long distances. As in classical mechanics,
a symmetry in a quantum system is intimately linked to a
conservation law, which divides the space of all states into
decoupled sectors. We envision scenarios where these sectors
can be characterized by increasing long-range entanglement,
as in the examples below. Our idea is sketched in Fig. 1(a):
Suppose the system is initially in some low-entangled state in
sector S0, e.g., the ground state or a product state. We apply a
series of symmetry-breaking pulses to drive the system toward
the maximally entangled sector S∗, hosting one or few states.
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The pulses are timed optimally to maximize this one-way
transfer. If the transfer fidelity is high, one can produce a large
weight in S∗ with a small number of pulses.

We will show how this technique allows one to generate
Bell pairs between any number of mirror-conjugate sites in a
spin chain [Fig. 1(b)], realizing variants of the so-called “rain-
bow” state [18,19]. These states possess a high persistency
of entanglement [20] and can be used to distribute entangle-
ment in a quantum network [14]. They also arise in quantum
many-body scars [21]. Unlike other protocols for creating
rainbow-like states, we do not require the spin-spin interac-
tions to be selectively driven [6,22], individually fine-tuned
[14,15,18], or coupled with engineered dissipation [16,23,24].
Instead, our scheme uses local π pulses that are standard in
experiments and works well even for a nonintegrable spin
chain. The Bell pairs are created in a time linear in system
size, and stable thereafter due to the symmetry conservation.

Furthermore, our approach extends, in principle, to arbi-
trary interacting systems with a similar symmetry structure. In
particular, we show how one can drive a Fermi-Hubbard chain
[25] toward an elusive maximally-correlated η-pairing state
[26]. As the protocol is symmetry based, the entanglement
generated is robust against any perturbation that preserves the
symmetry.

Qubit-array protocol: Model. We consider the simplest
spin-1/2 XX Hamiltonian with 2l + 1 sites for integer l ,

Ĥ = −(J/4)
l−1∑

i=−l

(
σ̂ x

i σ̂ x
i+1 + σ̂

y
i σ̂

y
i+1

)
, (1)

where the σ̂ ’s are the Pauli spin operators and J is the
spin-spin coupling (h̄ = 1). This model can be reduced to
free fermions through a Jordan-Wigner (JW) map, f̂i =
σ̂−

i

∏
j<i(−σ̂ z

j ), where σ̂±
i := (σ̂ x

i ± iσ̂ y
i )/2 and f̂ †

i creates
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FIG. 1. (a) Schematic of how one can sequentially transfer a
system through symmetry sectors Sn by a sequence of pulses at
optimal times tn to prepare a maximally entangled state in S∗. Here,
the block-diagonal structure represents the undriven Hamiltonian Ĥ .
(b) Illustration for a symmetric spin-1/2 chain: π pulses create ↑
spins at the center site, which then spread under the Hamiltonian,
giving rise to multiple Bell pairs between mirror-conjugate sites.

a fermion at site i, yielding Ĥ = −(J/2)
∑

i f̂ †
i f̂i+1 + H.c.

Thus, spins ↑ and ↓ correspond to filled and empty sites,
respectively, in the fermion picture. Later we will add a local
interaction which will make the system nonintegrable without
affecting the protocol.

Symmetry. As shown in Ref. [23], and probed experimen-
tally in Ref. [27], there is a crucial symmetry relating to the
entanglement between left and right halves of the chain, given
by the symmetry operator

Ĉ = σ̂ z
0/2 +

l∑
i=1

( f̂ †
i f̂−i + H.c.) . (2)

Here, σ̂ z
0 measures the fermion-number parity at the

center site, and the terms f̂ †
i f̂−i exchange spins between

mirror-conjugate sites i and −i with a phase given
by the total parity in between. The nature of this
exchange becomes clearer if one rewrites Eq. (2) as
Ĉ = σ̂ z

0/2 + ∑l
i=1(â†

i,+âi,+ − â†
i,−âi,−), where âi,± :=

( f̂i ± f̂−i )/
√

2. Here, â†
i,± creates a Bell pair between

sites i and −i, â†
i,±|vac〉 ∝ |↑i↓−i〉 ± |↓i↑−i〉, where |vac〉

is the vacuum state with all spins ↓. The symmetric and
antisymmetric Bell pairs can be thought of as having a
“charge” of ±1, such that Ĉ − σ̂ z

0/2 measures the net “charge”
of all such pairs. Since this “charge” is 0 for the states |↓i↓−i〉
and |↑i↑−i〉 = â†

i,+â†
i,−|vac〉, it counts the number of Bell

pairs at {i,−i} up to a sign. Therefore, the eigenvalues of
Ĉ vary from λ = −l − 1/2 to λ = l + 1/2 in steps of 1,
with the ±1/2 arising from σ̂ z

0/2. In the extreme sectors,
λ = ±(l + 1/2), there is a single, maximally entangled
state with a Bell pair at all positions, given by |�±〉 ∝
|±〉0

∏l
i=1[ |↑i↓−i〉 + (−1)i|↓i↑−i〉], where |+〉 ≡ |↑〉,

|−〉 ≡ |↓〉, and the alternating phase (−1)i originates from
the JW string. Smaller absolute values of λ correspond to
states with fewer Bell pairs on average.

Protocol. Our strategy is to start from the vacuum state
with λ = −1/2 and apply a sequence of timed pulses to reach
the state |�+〉 with λ = l + 1/2. For this, one can increase
λ by 1 by flipping the center spin from ↓ to ↑ [see Eq. (2)].
However, one has to ensure it does not affect the exchange
terms f̂ †

i f̂−i which also depend on the center spin. Thus,
instead of a π pulse at the center site alone, one has to
apply a fermionic pulse, e.g., f̂0 + f̂ †

0 ∝ σ̂ x
0

∏
i<0 σ̂ z

i , which

FIG. 2. (a) Time evolution of the center-spin magnetization 〈σ̂ z
0 〉

of a 9-site spin-1/2 XX chain using exact diagonalization. The center
spin is flipped whenever 〈σ̂ z

0 〉 reaches a minimum below 0, which
increases the expectation of the symmetry Ĉ (horizontal lines) that
relates to the number of Bell pairs between mirror-conjugate sites.
Accordingly, the von Neumann entropy S between two sides of
the chain grows monotonically (dotted curve). (b) Weights wλ in
different symmetry sectors after each pulse, showing a high-fidelity
transfer toward more strongly entangled states. (c)–(f) Pairwise con-
currence Ci, j between sites i and j (with Ci,i ≡ 0) at times indicated
by the green labels in (a), showing how the Bell pairs at {i, −i} are
successively stacked inward until all positions are filled.

commutes with f̂ †
i f̂−i ∀i �= 0. This amounts to applying si-

multaneous local π pulses on half the qubits, which can be
implemented in experiments. Under such a fermionic pulse,
〈Ĉ〉 → 〈Ĉ〉 − 〈σ̂ z

0 〉, so if the center spin is ↓ when the pulse is
applied, 〈Ĉ〉 increases by 1.

Another way to interpret the dynamics is to note that
the antisymmetric modes âi,− decouple and remain unoc-
cupied throughout. Then one finds Ĥ = −(J/

√
2) ĉ†

0ĉ1 −
(J/2)

∑l−1
i=1 ĉ†

i ĉi+1 + H.c., where ĉ0 := f̂0 and ĉi>0 := âi,+,
and the symmetry can be written as Ĉ = N̂ − 1/2, where N̂
is the total number of fermions. Thus, we increase 〈Ĉ〉 by
injecting fermions at site 0, until we reach |�+〉 with all the
symmetric modes occupied.

Figure 1(b) shows the resulting protocol: Flipping the cen-
ter spin of the vacuum state gives λ = 1/2 and produces a
spin-↑ impurity that spreads out ballistically in both direc-
tions [28], entangling those sites. During this spreading, λ

is unaltered as [Ĥ, Ĉ] = 0. After a time t1 ∼ 2/J , the center
site points ↓ again, when we apply the next pulse, producing
another ↑ spin and increasing λ by 1. Repeating this process
l times gets one to the state |�+〉 with l Bell pairs in a time
tl ∼ 2l/J .

The protocol is not perfect as the center does not fully
relax to a spin-↓ state after the second pulse, as shown in
Fig. 2(a). We apply the following pulses whenever 〈σ̂ z

0 〉 is
minimum (and negative) for the first time. Due to the non-
vanishing spin-↑ component, there is a small likelihood that
λ decreases by 1 during the spin flip. However, as shown in
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FIG. 3. (a) Evolution of the center-spin magnetization, 〈σ̂ z
0 〉, dur-

ing our protocol for 47 sites (l = 23) using exact diagonalization.
The last pulse is applied at time t f , after which 〈σ̂ z

0 〉 reaches a
minimum above 0. (b) Final value of 〈Ĉ〉 and duration t f as a
function of l , compared with 0.6(l + 2) and 2.35l/J , respectively,
shown by the gray lines. The sudden small fluctuations are due to
variation in the number of pulses, which fluctuates around 0.8l for
large l . (c) Relative change of 〈Ĉ〉 f when the timing of each pulse is
randomized by ±δt for l � 10. The dots show mean values and the
shaded area shows standard deviations from 1000 trajectories.

Fig. 2(b), the distribution remains strongly peaked at the target
sector λ = n + 1/2 after the nth pulse. As a result, both 〈Ĉ〉
and the entanglement entropy between left and right halves
are near maximal at the end of the sequence [see Fig. 2(a)].
Furthermore, the entanglement is distilled in the form of Bell
pairs, which is unusual even for highly entangled states [9].
Such Bell pairs between mirror-conjugate sites are seen in
Fig. 2(f), where we plot the concurrence between sites i and
j, computed from their reduced density matrix [29], which
is a robust measure of entanglement between two qubits that
increases from 0 when the qubits are not entangled to 1 when
they are maximally entangled.

Figure 2(c) shows the first of these Bell pairs is established
between the two end sites when the first ↑ spin arrives at
t ∼ l/J . Each subsequent pulse adds one more Bell pair to-
ward the center [Figs. 2(d)–2(f)]. This stacking is also evident
in the experimentally measurable spin-spin correlations (see
Appendix B).

Finite-size scaling. The success of the protocol is charac-
terized by the final value of 〈Ĉ〉 which is bounded by l + 1/2.
Figure 3(a) shows that, for large l , 〈Ĉ〉 increases quite uni-
formly up to times t ∼ 2l/J . Thereafter, 〈σ̂ z

0 〉 can reach a
minimum above 0, where applying a pulse would decrease
〈Ĉ〉, and continuing beyond this point does not lead to sig-
nificant gains. Figure 3(b) shows that the resulting final value
of 〈Ĉ〉 increases linearly with l , 〈Ĉ〉 f ≈ 0.6(l + 2), i.e., the
average number of Bell pairs grows linearly with the number
of qubits. Furthermore, as the pulses are roughly uniformly
spaced, the preparation time also scales linearly, t f ∼ 2l/J , as
shown in Fig. 3(c). This scaling is on par with more complex

FIG. 4. Maximum value of 〈Ĉ〉 attained for 9 sites in the pres-
ence of (a) symmetry-preserving and (b) symmetry-breaking, unitary
(solid) and nonunitary (dotted) perturbations: (a) g is the strength
of an integrability-breaking local coupling in Ĥg (see text); pT is a
defect probability of starting with an ↑ spin at any given site; δxy

is the anisotropy for an XY chain, δxy := (Jx − Jy )/(Jx + Jy ); εh is
a harmonic-trap-induced inhomogeneity, such that Ji,i+1 = J/[1 −
ε2

h (i + 1/2)2] [28]; (b) γd is a uniform dephasing rate, modeled by
Lindblad operators

√
γd σ̂

z
i /2 (see Appendix E); Jz is a uniform z-z

coupling; δε is a disorder strength that gives δĤ = ∑
i εiσ̂

z
i where

εi are randomly distributed in [−δε/2, δε/2]; α characterizes long-
range interactions Ji, j = J/|i − j|α . For disorder, dephasing, and
thermal defects, 〈Ĉ〉 is ensemble averaged.

protocols using two-qubit gates [6] or nonuniform coupling
[14,15], and much faster than using correlated dissipation
[16,23]. It could be enhanced further by optimal pulse shaping
[30,31]. Moreover, one can project the final state onto |�+〉 by
measuring the spin imbalance σ̂ z := ∑

i σ̂
z
i , which varies as

σ̂ z = 2(Ĉ − l ) during the protocol, since λ is changed by flip-
ping a spin. Note the Lieb-Robinson bound sets a fundamental
speed limit on how fast distant parts of a locally interacting
system can be entangled [32,33]. By having a preparation time
that grows linearly with system size, our protocol saturates
this bound.

Robustness. The protocol does not rely on the precise tim-
ing of the pulses. Figure 3(c) shows how the fidelity 〈Ĉ〉 f is
affected if we change the timing of every intermediate pulse
by a random number between ±δt . First, 〈Ĉ〉 f is unaffected
to linear order in δt . Second, even when δt = 1/J , which is
roughly half the spacing between the ideal pulses, 〈Ĉ〉 f is
reduced only by 15% for any size l � 10.

Figure 4 shows the protocol is relatively insensitive to
generic imperfections found in experiments. In particular, 〈Ĉ〉
is affected only to second order in common Hamiltonian
perturbations (see argument in Appendix D). This includes
both symmetry-preserving cases, such as an x-y anisotropy,
and symmetry-breaking perturbations, such as a z-z coupling,
random Zeeman splittings, or next-nearest-neighbor coupling.

If a perturbation commutes with both Ĉ and σ̂ z
0 , the full

time evolution of 〈Ĉ〉 is unaltered, as in the case of a uniform
Zeeman field σ̂ z. For other symmetry-preserving perturba-
tions, including reflection-symmetric traps [23] and dephasing
at the center site, the final value of 〈Ĉ〉 may be lower but the
Bell pairs are stable. If the symmetry itself is broken, however,
〈Ĉ〉 decreases in between pulses, attaining the maximum at an
intermediate time, rather than at the end of the pulse sequence.
In Fig. 4 〈Ĉ〉max refers to this maximum value in symmetry-
broken cases and to the final value of 〈Ĉ〉 otherwise.

L012039-3



DUTTA, KUHR, AND COOPER PHYSICAL REVIEW RESEARCH 6, L012039 (2024)

We emphasize that the protocol is of broad generality and
not limited to free-fermionic models. For instance, consider
the Hamiltonian Ĥg = Ĥ − (g/4)σ̂ z

0 (σ̂ z
1 + σ̂ z

−1 + 1). Here, we
have added a z-z coupling between the center spin and its
neighbors and a proportional Zeeman field such that there is
no energy cost for spreading an ↑ spin from site 0 to a super-
position of sites 1 and −1. One can show that Ĥg preserves the
symmetry Ĉ [23], but the z-z coupling mediates interactions
between the JW fermions. In fact, Ĥg displays level repulsion
characteristic of nonintegrability (see Appendix C). Nonethe-
less, Fig. 4(a) shows that the efficiency of our pulse sequence
falls very slowly with g. Even for strong integrability breaking
at g = J we recover nearly the same finite-size scaling, with
〈Ĉ〉 ≈ 0.6(l + 1) for up to l = 25 [Fig. 8(b)].

Experimental realization. The protocol can be imple-
mented most naturally on experimental platforms where
interacting qubits lead to the XX model in Eq. (1) and where
one has the capability of single-site addressing. These include
quantum-gas microscopes [34], superconducting circuits [35],
and arrays of Rydberg atoms [36].

Quantum-gas microscope experiments allow one to flip the
spin of individual atoms in a chain with high accuracy using a
tightly focused laser beam and a microwave field [28]. Using
two-component bosons at unit filling in the limit of strong
interactions realizes a Heisenberg chain through virtual spin
exchange [37]. By separately tuning the intra- and interspecies
interactions, one can set the z-z coupling to 0, producing our
spin-1/2 XX model, as in Ref. [38]. The nonintegrable Hamil-
tonian Ĥg may be engineered by tuning the local confinement
for one of the spin states, which gives a residual z-z coupling
between the center site and its neighbors (see Appendix C).

The nearest-neighbor XX chain has also been realized
using capacitively coupled transmon qubits in a supercon-
ducting circuit [39], where signatures of the symmetry Ĉ
were observed recently [27]. Here one can perform arbitrary
single-qubit rotations [35]. The dominant errors come from
on-site dephasing and disorder, which are both hundreds of
times smaller than J in existing setups [39].

Resonant dipole-dipole interactions between Rydberg ex-
citations in a chain of atoms also yields an XX model but with
long-range coupling, Ji, j = J/|i − j|α with α = 3 [36], which
breaks the symmetry Ĉ. Nonetheless, one can obtain fidelities
of up to 75% for 9 sites [Fig. 4(b)]. For trapped-ion chains
[40], however, α is typically limited to smaller values, making
the protocol less viable.

The pulse timings for a given setup can be determined
one at a time by calibrating its evolution, e.g., by evolving
the system repeatedly over a variable duration and imaging
the final state, as is standard in quantum-gas microscopes
[28]. One can also use first-principles numerical modeling.
Furthermore, the pulses may be automated by monitoring the
central spin and using conditional feedback [41,42]. However,
the resulting evolution is nonunitary and we do not model it
here. As Fig. 3(c) shows, the fidelity under unitary evolution
remains high even if the pulse times are suboptimal.

Note that the linear dimension of the relevant experimen-
tal setups is typically limited to few tens of sites and one
can probe the dynamics for at least several tens of tunneling
time [27,28,38,39]. Our findings are accessible in this regime
[see Fig. 3(b)].

Generalizations: η pairing. Having demonstrated our ap-
proach for a spin chain, we now consider the celebrated
Fermi-Hubbard model [25] with 2l sites,

ĤF =
∑

s=↑,↓

2l−1∑
i=1

(−Jĉ†
i,sĉi+1,s + H.c.) + U

2l∑
i=1

n̂i,↑n̂i,↓ . (3)

Here, ĉ†
i,s creates a fermion with spin s at site i, n̂i,s :=

ĉ†
i,sĉi,s gives the site occupation, J is now the nearest-neighbor

tunneling, and U > 0 is an on-site repulsion. It has been
known since the 1990s that Ĥ has eigenstates with long-range
superconducting order [26], thanks to an SU(2) symmetry
with generators η̂− = ∑

i(−1)iĉi,↑ĉi,↓, η̂+ = η̂−†, and η̂z =∑
i(n̂i,↑ + n̂i,↓ − 1)/2. Here, η̂+ acting on the vacuum |0〉

creates a bound pair (doublon) with quasimomentum π (an
η pair), which leads to staggered superconducting pair cor-
relations Pi, j = 〈ĉ†

i,↓ĉ†
i,↑ĉ j,↑ĉ j,↓〉. In particular, at half filling

(η̂z = 0), the correlations are maximal for an η condensate
|Y 〉 ∝ (η̂+)l |0〉, which gives Pi, j = (−1)i+ j l/(4l − 2) ∀i �= j
[26]. However, producing an η pair costs energy U , so |Y 〉
is a highly excited state that is difficult to engineer in theory
[43–50] and has not been realized experimentally.

To prepare |Y 〉 using pulses, we note that the number of
η pairs, Nη, is measured by the symmetry η̂2 = η̂+η̂− − η̂z +
(η̂z )2 with eigenvalues Nη(Nη + 1), where Nη = 0, 1, . . . , l at
half filling. The maximally correlated |Y 〉 is the only state hav-
ing Nη = l . Further, as shown in Ref. [44], one can change Nη

by ±1 by applying the current operator Ĵ = i
∑

i,s ĉ†
i+1,sĉi,s +

H.c.: This amounts to changing J → iJ ′(t ) in Eq. (3) for a
short pulse, which would be challenging to implement for
neutral atoms, but possible via laser-assisted tunneling [51]
or lattice shaking [52].

Thus, we arrive at a conceptually simple protocol: Start-
ing from an antiferromagnetic ground state with Nη = 0 for
U � J , as realized in Ref. [53], we repeatedly apply Ĵ when
it would increase 〈η̂2〉 the most. To this end, we monitor T :=
〈Ĵ η̂2Ĵ 〉/〈Ĵ 2〉 and apply the next pulse whenever T is maxi-
mum over a virtual-tunneling time �t = U/(2J2), the slowest
timescale in the problem, as illustrated in Fig. 5. Figure 6(a)
shows that the state after l pulses has a significant overlap with
|Y 〉, which is reached in a time t ∼ 6/J for 8 sites, which is
much faster than adiabatic [43] or dissipative [50] approaches
for the same system size. The η pairing is manifest in the
pair-momentum distribution N (q) = (2l )−1∑

i, j eiq(i− j)Pi, j as
a sharp peak at q = π [Fig. 6(b)], which can be detected
experimentally [54]. Note that the final value of 〈η̂2〉 grows
linearly with l [Fig. 6(c)], so the average number of η pairs
grows as

√
l . The preparation time is bounded by l�t .

The Hubbard model also has a spin-SU(2) symmetry
whose generators Ŝ± and Ŝz are related to the η generators by
a particle-hole transformation ci,↓ → (−1)iĉ†

i,↓ [25]. Hence,

there is a dual protocol for maximizing the total spin 〈Ŝ2〉
for long-range spin-spin correlations, with the pulse operator
Ĵs = i

∑
i ĉ†

i+1,↑ĉi,↑ − ĉ†
i+1,↓ĉi,↓ + H.c., i.e., a spin-dependent

complex tunneling as in Ref. [55].
Note that our approach is distinct from other nonadiabatic

protocols for η pairing in the literature, which we briefly
summarize. References [45,46] employ quasilocal dissipative
drives, modeled by an extensive number of quartic and higher-
order two-site Lindblad operators, that drive the system to |Y 〉.
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FIG. 5. Generation of η pairs in a Fermi-Hubbard chain with 8 sites and U/J = 10, starting from an antiferromagnetic ground state at half
filling, from exact diagonalization. (a) Efficacy T := 〈Ĵ η̂2Ĵ 〉/〈Ĵ 2〉 is monitored for a duration U/(2J2 ) and the next pulse of Ĵ is applied
when T is maximum, shown by the dotted vertical lines. Solid curves show the resulting piecewise evolution. (b) 〈η̂2〉 is conserved in between
pulses and jumps to the instantaneous value of T after the application of each pulse (black dots).

However, engineering such dissipators is nontrivial and has
not been realized. References [47–49] use heating within a
symmetry sector to distribute correlations already present in
the initial state over all distances. Crucially, there is no mech-
anism to switch sectors, and starting from the ground state
yields 〈η̂2〉 ∝ 1/l . Reference [44] is closer to our approach in
that they use a unitary drive that breaks the SU(2) symmetry.
However, they apply a single extended pulse and produce no
overlap with |Y 〉 for any system size.

Conclusions. We have introduced a technique that uses
global symmetries to produce on-demand long-range entan-
glement and strong quantum correlations. The approach relies
on the symmetry structure and can be extended to dissi-
pative systems [23,47,49] and higher dimensions [26,56].
For simplicity, we have used optimally timed instantaneous
pulses; one should be able to obtain even higher fidelities by
allowing more general waveforms with optimal control strate-
gies [30,31,44]. Furthermore, it may be possible to automate
the pulse timings with continuous monitoring and feedback
[41,42]: The knowledge gained from measurements can fur-
ther help steer the system to the desired state, which would
be useful to explore in future studies. Together with advances
in engineering many-body Hamiltonians [34–36,40,57] and
dissipation [58,59], our technique paves an exciting route
to synthesizing strongly-entangled quantum states with key
applications to quantum information processing.

FIG. 6. Results for the η-pairing protocol with strong repulsive
interactions (U/J = 10). (a) Distribution among symmetry sectors
of η̂2 with different numbers of η pairs, Nη, after successive pulses
for 2l = 8 sites. The red square highlights a notable overlap with
the maximally correlated η condensate |Y 〉. (b) Initial and final
pair-momentum distributions, showing the emergence of a peak at
the band edge, characteristic of η pairing. (c) The final value of
〈η̂2〉 grows linearly with l , but the many-body overlap with |Y 〉 falls
exponentially [43].

Data supporting this publication are available in the Apollo
repository [60].
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Buča, and Klaus Mølmer for useful discussions. This work
was supported by EPSRC Grant No. EP/P009565/1 and by a
Simons Investigator Award, Grant No. 511029.

Appendix A: Equation of motion for the qubit array. Our
protocol for generating Bell pairs leads to a closed evolution
of the two-point correlations 〈 f̂ †

i f̂ j〉 and 〈 f̂i f̂ j〉, where f̂i are
the Jordan-Wigner (JW) fermions. In between pulses, they
evolve under the free-fermion Hamiltonian, which gives

∂t 〈 f̂ †
i f̂ j〉 = iJ

2

〈
f̂ †
i f̂ j+1 + f̂ †

i f̂ j−1 − f̂ †
i+1 f̂ j − f̂ †

i−1 f̂ j
〉
, (A1a)

∂t 〈 f̂i f̂ j〉 = iJ

2

〈
f̂i f̂ j+1 + f̂i f̂ j−1 + f̂i+1 f̂ j + f̂i−1 f̂ j

〉
(A1b)

∀i, j, with f̂l+1 := f̂−l−1 := 0. A fermionic pulse f̂0 + f̂ †
0

changes the expectation 〈Ô〉 to 〈( f̂ †
0 + f̂0)Ô( f̂0 + f̂ †

0 )〉, which
couples 〈 f̂ †

i f̂ j〉 and 〈 f̂i f̂ j〉 through the substitutions

〈 f̂ †
0 f̂0〉 −→ 1 − 〈 f̂ †

0 f̂0〉 , (A2a)

〈 f̂ †
i f̂0〉 ←→ 〈 f̂i f̂0〉∗ ∀i �= 0 , (A2b)

〈 f̂ †
0 f̂i〉 ←→ −〈 f̂0 f̂i〉 ∀i �= 0. (A2c)

Such a pulse is applied when 〈σ̂ z
0 〉 reaches a minimum

below 0. Using σ̂ z
0 = 2 f̂ †

0 f̂0 − 1 and Eq. (A1a) yields

∂t
〈
σ̂ z

0

〉 = 2J Im
〈
f̂ †
−1 f̂0 − f̂ †

0 f̂1
〉
, (A3a)

∂2
t

〈
σ̂ z

0

〉 = J2 Re
〈
f̂ †
−1 f̂−1 + f̂ †

1 f̂1 − 2 f̂ †
0 f̂0

+2 f̂ †
−1 f̂1 − f̂ †

−2 f̂0 − f̂ †
0 f̂2

〉
, (A3b)

where Re and Im denote real and imaginary parts. Thus,
starting with a single ↑ spin at i = 0, we evolve Eqs. (A1a)
and (A1b), making the changes in Eqs. (A2a)–(A2c) whenever
∂t 〈σ̂ z

0 〉 = 0, ∂2
t 〈σ̂ z

0 〉 > 0, and 〈σ̂ z
0 〉 < 0, for up to l times, as

shown in Figs. 2(a) and 3(a).
Appendix B: Spin-spin correlations. The Bell pairs can

be detected in experiments by measuring the spin-spin cor-
relations 〈σ̂ ν

i σ̂ ν
j 〉 for ν = x, y, z, plotted in Fig. 7. Since

the dynamics are generated by a quadratic Hamiltonian, the
many-body state is Gaussian [61] and we can find 〈σ̂ ν

i σ̂ ν
j 〉

from 〈 f̂ †
i f̂ j〉 and 〈 f̂i f̂ j〉 using Wick’s theorem. To this end,

L012039-5
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FIG. 7. Spin-spin correlations 〈σ̂ ν
i , σ̂ ν

j 〉 := 〈σ̂ ν
i σ̂ ν

j 〉 − 〈σ̂ ν
i 〉〈σ̂ ν

j 〉 for a 9-site XX chain from exact diagonalization, corresponding to
Figs. 2(c)–2(f) in the main text, reflecting the successive stacking of Bell pairs between mirror-conjugate sites. Pulses are applied at times
Jt = 2.4, 5.0, 7.8, 10.2, whereby the phase correlations 〈σ̂ x

i , σ̂ x
−i〉 and 〈σ̂ y

i , σ̂
y
−i〉 flip sign. Note that 〈σ̂ x

i 〉 = 〈σ̂ y
i 〉 = 0 ∀t .

we first define Âi := f̂ †
i + f̂i and B̂i := f̂ †

i − f̂i. Substituting
σ̂ z

i = B̂iÂi in the JW transformation gives, for i < j,〈
σ̂ z

i σ̂ z
j

〉 = 〈B̂iÂiB̂ j Â j〉 , (B1a)

〈
σ̂ x

i σ̂ x
j

〉 =
〈

j−1∏
k=i

B̂kÂk+1

〉
, (B1b)

〈σ̂ y
i σ̂

y
j 〉 = (−1) j−i

〈
j−1∏
k=i

ÂkB̂k+1

〉
. (B1c)

Applying Wick’s theorem to Eq. (B1a), we find〈
σ̂ z

i σ̂ z
j

〉=〈B̂iÂi〉〈B̂ j Â j〉−〈B̂iB̂ j〉〈ÂiÂ j〉+〈B̂iÂ j〉〈ÂiB̂ j〉 . (B2)

Similarly, the string correlation in 〈σ̂ x
i σ̂ x

j 〉 [Eq. (B1b)] can be
reduced to the Pfaffian of an antisymmetric matrix �x [62] of
size 2( j − i), with the elements

�x
m,n =

(〈B̂mB̂n〉 + δm,n 〈B̂mÂn+1〉
〈Âm+1B̂n〉 〈Âm+1Ân+1〉 − δm,n

)
, (B3)

where m, n = i, i + 1, . . . , j − 1. One can find �x
m,n using

〈ÂmÂn〉 = δm,n + 2i Im
〈
f̂m f̂n + f̂ †

m f̂n
〉
, (B4a)

〈B̂mB̂n〉 = −δm,n + 2i Im
〈
f̂m f̂n − f̂ †

m f̂n
〉
, (B4b)

〈ÂmB̂n〉 = δm,n − 2i Re
〈
f̂m f̂n + f̂ †

m f̂n
〉
, (B4c)

〈B̂mÂn〉 = −〈ÂnB̂m〉 . (B4d)

From Eq. (B1c), 〈σ̂ y
i σ̂

y
j 〉 is obtained by interchanging Â and B̂

in �x and multiplying its Pfaffian by (−1) j−i.
Appendix C: Integrability breaking. As discussed in the

main text, our protocol also works well in the presence of
a central z-z coupling described by the full Hamiltonian
Ĥg = Ĥ − (g/4)σ̂ z

0 (σ̂ z
1 + σ̂ z

−1 + 1). This coupling translates
to a density-density interaction between the JW fermions at
sites 0 and ±1, so the model is no longer free fermionic. By
setting the occupations of the antisymmetric modes, f̂i − f̂−i,
to zero we find a reduced many-body Hamiltonian governing
the dynamics in between pulses,

Ĥg = − J√
2

ĉ†
0ĉ1 − J

2

l−1∑
i=1

(ĉ†
i ĉi+1 + H.c.) − g

4
(−1)ĉ†

0 ĉ0+ĉ†
1 ĉ1 ,

(C1)

where ĉ0 := f̂0 and ĉi>0 := ( f̂i + f̂−i )/
√

2. Clearly, Ĥg con-
serves the total fermion number N̂ = ∑l

i=0 ĉ†
i ĉi, which is

related to the symmetry Ĉ as Ĉ = N̂ − 1/2.
Within each fermion-number sector, the energy spec-

trum exhibits level repulsion characteristic of nonintegrability.
In particular, we study the distribution P(r) of the ratio
of consecutive level spacings, r := (En+1 − En)/(En − En−1),
proposed in Ref. [64]. Prior studies have shown that for an
integrable system the level spacings are Poisson distributed,
which gives P(r) ∝ 1/(1 + r)2, whereas for a nonintegrable
system the spacings follow Wigner-Dyson statistics of a
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FIG. 8. (a) Distribution of the ratio of consecutive energy gaps for the model in Eq. (C1) with g/J = 1 and l = 18 in the sectors
N = 9, 10, showing level repulsion. The solid line is a fit by a Wigner-like surmise with Dyson index β ≈ 0.93 [63]. (b) Final value of
〈Ĉ〉 and (c) preparation time as a function of l for our protocol; gray lines show 0.6(l + 1) and 2.25l , respectively.

random-matrix ensemble, yielding P(r) ∝ (r + r2)β/(1 +
r + r2)1+(3/2)β for a Dyson index β [63]. For g �= 0 we find the
latter distribution, as shown in Fig. 8(a) for the largest sector
with g = J . This strongly suggests that the system is not only
interacting but also nonintegrable.

Nonetheless, Figs. 8(b) and 8(c) show that the finite-
size scaling is almost unaltered from the noninteracting case
(g= 0) for the same pulse protocol as in Fig. 3.

To realize this model in experiments, one can use ultracold
bosons with spin states σ =↑,↓ in a deep optical lattice. As
detailed in Refs. [37,65], for unit filling their dynamics map
onto an anisotropic Heisenberg chain where the spin exchange
results from virtual hopping. The XX chain is realized by set-
ting the on-site interactions U ↑↑

i = U ↓↓
i = 2U ↑↓

i for all sites i
[38]. To retain a z-z coupling between site 0 and ±1, one can
change the local confinement for spin ↑ at site 0, which would
alter its Wannier function and the local interaction strengths.
Then the central z-z coupling is given by

g = t2
↑ + t2

↓
U ↑↓

0

− 2t2
↑

U ↑↑
0

− 2t2
↓

U ↓↓
0

, (C2)

where tσ is the hopping amplitude for spin σ .
Appendix D: First-order correction for hamiltonian pertur-

bations. In the presence of a perturbation εĤ ′, the dynamics
are generated by Û (t ) = e−i(Ĥ+εĤ ′ )t (with h̄ = 1). Using a
dual of the Baker-Campbell-Hausdorff formula (called the
Zassenhaus formula [66]), we write

Û †(t ) = eiĤt [1 − εP̂(t ) + O(ε2)], (D1)

where P̂(t ) is an anti-Hermitian operator given by

P̂(t ) =
∞∑

n=1

(−it )n

n!
[(Ĥ )n−1, Ĥ ′], (D2)

with [(Ĥ )n, Ĥ ′] :=
[

Ĥ, . . . [Ĥ , [Ĥ︸ ︷︷ ︸
n times

, Ĥ ′]] . . .

]
, (D3)

and [(Ĥ )0, Ĥ ′] := Ĥ ′. Hence, the change in the expectation
value of an operator Ô at time t is

δ〈Ô〉(t ) = 〈�(0)|Û †(t ) ÔÛ (t ) − eiĤt Ô e−iĤt |�(0)〉
= ε〈�(t )|[Ô, P̂(t )]|�(t )〉 + O(ε2), (D4)

where |�(t )〉 is the unperturbed state. So, the first-order cor-
rection vanishes provided 〈[Ô, P̂(t )]〉 = 0. From Eq. (D2),
this is true at all times if 〈[Ô, [(Ĥ )n, Ĥ ′]]〉 = 0 ∀n. This con-
dition is, in fact, satisfied for the operators Ĉ and σ̂ z

0 for a
number of common perturbations Ĥ ′, leading to the quadratic
variations in Fig. 4.

Appendix E: Equation of motion with perturbations. The
dynamics of the qubit array remain free fermionic for a num-
ber of variations, including nonuniform coupling Ji, Zeeman
splittings εi, and dephasing rates γi > 0. The first two are
described by the Hamiltonian

Ĥ = −1

2

l−1∑
i=−l

(
Ji f̂ †

i f̂i+1 + H.c.
) +

l∑
i=−l

εi f̂ †
i f̂i , (E1)

whereas the dephasing can be modeled by Lindblad operators
L̂i = √

γi σ̂
z
i /2 under a standard Born-Markov approximation

[67], resulting in the evolution

∂t 〈Ô〉 = i〈[Ĥ , Ô]〉 +
∑

i

〈[
L̂i, [Ô, L̂i]

]〉
(E2)

for any Hermitian operator Ô. The dephasing causes local co-
herences to decay at a rate γi, i.e., ∂t 〈σ̂ x

i 〉L = −γi〈σ̂ x
i 〉, where

the subscript L denotes the dephasing component. The corre-
lations 〈 f̂ †

i f̂ j〉 and 〈 f̂i f̂ j〉 again form a closed set of equations,
which can be found from Eq. (E2) by straightforward algebra.

Similarly, one can include an XY anisotropy δxy=(Jx−Jy)/
(Jx + Jy), which adds pairing terms f̂i f̂ j to the Hamiltonian.
For other perturbations such as a z-z coupling, long-range
interactions, or incoherent spin flips in the bulk, the system
is no longer free fermionic and we perform a many-body
simulation.
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